41 research outputs found

    The evolutionary tuning of hearing

    Get PDF
    After the transition to life on land, tympanic middle ears emerged separately in different groups of tetrapods, facilitating the efficient detection of airborne sounds and paving the way for high frequency sensitivity. The processes that brought about high-frequency hearing in mammals are tightly linked to the accumulation of coding sequence changes in inner ear genes; many of which were selected during evolution. These include proteins involved in hair bundle morphology, mechanotransduction and high endolymphatic potential, somatic electromotility for sound amplification, ribbon synapses for high-fidelity transmission of sound stimuli, and efferent synapses for the modulation of sound amplification. Here, we review the molecular evolutionary processes behind auditory functional innovation. Overall, the evidence to date supports the hypothesis that changes in inner ear proteins were central to the fine tuning of mammalian hearing

    Cannabinoids activate the insulin pathway to modulate mobilization of cholesterol in C. elegans

    Get PDF
    The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathwayFil: Hernåndez Cravero, Bruno. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario. Laboratorio de Fisiología Microbiana (IBR-CONICET); Argentina.Fil: Vranych, Cecilia V. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario. Laboratorio de Fisiología Microbiana (IBR-CONICET); Argentina.Fil: De Mendoza, Diego. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario. Laboratorio de Fisiología Microbiana (IBR-CONICET); Argentina.Fil: GallinoI, Sofía. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres". Laboratorio de Fisiología y Genética de la Audición (INGEBI-CONICET); Argentina.Fil: Elgoyhen, Ana Belén. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres". Laboratorio de Fisiología y Genética de la Audición (INGEBI-CONICET); Argentina.Fil: Florman, Jeremy. University of Massachusetts Medical School. Department of Neurobiology; United States.Fil: AlkemaI, Mark J. University of Massachusetts Medical School. Department of Neurobiology; United States.Fil: Diaz, Philippe. University of Montana. Department of Biomedical and Pharmaceutical Sciences; United States

    Emerging pharmacotherapy of tinnitus

    Get PDF
    Tinnitus, the perception of sound in the absence of an auditory stimulus, is perceived by about 1 in 10 adults, and for at least 1 in 100, tinnitus severely affects their quality of life. Because tinnitus is frequently associated with irritability, agitation, stress, insomnia, anxiety and depression, the social and economic burdens of tinnitus can be enormous. No curative treatments are available. However, tinnitus symptoms can be alleviated to some extent. The most widespread management therapies consist of auditory stimulation and cognitive behavioral treatment, aiming at improving habituation and coping strategies. Available clinical trials vary in methodological rigor and have been performed for a considerable number of different drugs. None of the investigated drugs have demonstrated providing replicable long-term reduction of tinnitus impact in the majority of patients in excess of placebo effects. Accordingly, there are no FDA or European Medicines Agency approved drugs for the treatment of tinnitus. However, in spite of the lack of evidence, a large variety of different compounds are prescribed off-label. Therefore, more effective pharmacotherapies for this huge and still growing market are desperately needed and even a drug that produces only a small but significant effect would have an enormous therapeutic impact. This review describes current and emerging pharmacotherapies with current difficulties and limitations. In addition, it provides an estimate of the tinnitus market. Finally, it describes recent advances in the tinnitus field which may help overcome obstacles faced in the pharmacological treatment of tinnitus. These include incomplete knowledge of tinnitus pathophysiology, lack of well-established animal models, heterogeneity of different forms of tinnitus, difficulties in tinnitus assessment and outcome measurement and variability in clinical trial methodology. © 2009 Informa UK Ltd.Fil: Langguth, Berthold. Universitat Regensburg; AlemaniaFil: Salvi, Richard. State University of New York; Estados UnidosFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    The α9α10 acetylcholine receptor: A non-neuronal nicotinic receptor

    No full text
    Within the superfamily of pentameric ligand-gated ion channels, cholinergic nicotinic receptors (nAChRs) were classically identified to mediate synaptic transmission in the nervous system and the neuromuscular junction. The α9 and α10 nAChR subunits were the last ones to be identified. Surprisingly, they do not fall into the dichotomic neuronal/muscle classification of nAChRs. They assemble into heteropentamers with a well-established function as canonical ion channels in inner ear hair cells, where they mediate central nervous system control of auditory and vestibular sensory processing. The present review includes expression, pharmacological, structure-function, molecular evolution and pathophysiological studies, that define receptors composed from α9 and α10 subunits as distant and distinct members within the nAChR family. Thus, although α9 and α10 were initially included within the neuronal subdivision of nAChR subunits, they form a distinct clade within the phylogeny of nAChRs. Following the classification of nAChR subunits based on their main synaptic site of action, α9 and α10 should receive a name in their own right

    Compartmentalization of antagonistic Ca 2+

    No full text
    corecore